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i.I General

I. IDtroduction

1.3

The safety and reliability of structures has always been a

matter of vital concern to the aerospace industry. In this

respect, fracture mechanics (FM) is a specially useful

technology, since it can provide a quantitative description of

the capability of structural parts to tolerate flaws. Initially,

FM concepts covered quasi-linear elastic conditions (LEFM).

Later, these methods were further developed to cover more general

situations. Specifically, there was a need to extend these

concepts to include cases where yielding was not necessarily

contained in very small regions, for the case of new and tougher

materials, higher loads, thinner sections, et cei_era. This led

to the development of the so-called Elastic Plastic Fracture

Mechanics (EPFM) Methodology.

To apply these methods, two pieces of information are

needed: the so-called material/specimen response to deformation,

and the material response to crack extension. The former,

obtained by finite element analysis or experimental calibration,

consists of two expressions connecting the J-integral, load P,

load-point displacement v, and crack length a for the specimen

geometry of interest; the latter consists of a characterization

of the way the material resists crack extension for the type of

load applied: J, or a similar parameter, versus crack extension,

for monotonic load, da/dN versus _K or AJ for cyclic loading,

da/dt versus K, C* or C t for creep crack growth, et cetera. It
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is assumed that within some limitations, these curves are

specimen geometry independent, i.e., the curve obtained from a

small laboratory specimen applies to the structural part under

consideration, as well.

A simple computer program can be developed to combine the

two pieces of information mentioned and assess the structural

reliability of the structural part of interest.

It is very important to devote effort to guarantee that the

curve of material response to crack extension is, in fact,

geometry independent. That is, it is important to understand the

limitations of the parameters and/or approaches 1_sed, identify

clearly their limits of validity, and eventually improve the

characterization of the phenomenon, proposing new parameters and

methods to extend the range of applicability of existing models.

1.2 Elastic Plastic Fracture _AIIj_Z_

Specifically, for the case of EPFM applied to monotonic

load, the mentioned limitations are expressed in ter!tls of the

amount of crack extension to ligament ratio, r, the ratio of

ligament to applied J over the yield strength, m, and the ratio

of logarithmic increase of J to logarithmic decrease in ligament,

To overcome some of these limitations, particularly the one

on r, Ernst [i.i] proposed a modified version of J called JM.

Resistance (R) curves plotted in terms of JM were not subjected

to the same limitations as those using J, and in general, showed
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a better correlation between specimens of different size and

geometry.

More recently, this methodology was further extended:

general formulas were developed for JM and JD for growing cracks,

criteria were proposed to identify the limits of applicability of

both parameters, methods were presented to make use of the

information of experimental points beyond this limit, and several

schemes were proposed to extrapolate small laboratory specimen

resistance curves to large amounts of crack extension, using JM,

JD, or other parameters [1.2].

Although the progress made has been significant, and

understanding has been gained on how to represent the R curve

[1.2-1.6], there are still several very important points that

need to be addressed before the method can be safely applied.

Among the most important ones, the need to extend this whole

methodology to include cases involving three dimensions (3D) must

be mentioned.

Specifically, it is mandatory to know how specimen

thickness, constraint, and the possible dependence of the

fracture mechanism on specimen thickness may affect the fracture

resistance.

Ultimately, this knowledge gained from "2D" planar specimens

should be used to explain and predict the behavior of real life

3D defects found in structures, i.e., surface or embedded cracks,

et cetera.



1.3 The Leak Before Burst (LBB) _V_j_L_

1.6

Pressure vessels containing surface flaws are often required

to comply with the so-called LBB criterion. LBB is understood as

the condition in which an assumed initial flaw will grow through

the wall of a pressure vessel and cause leakage rather than

bursting.

In particular, pressure vessels of interest to NASA have to

comply to MIL-STD-1522A Standard General Requirements for Safe

Design and Operation of Pressurized Missile and Space Systems.

This document requires that: (I) a/2c (crack depth to total

width ratio) needs to be in a range from 0.05 and 0.5, and (2)

LBB will occur if Kic/Oop > 2_B 0-5 with _°op < Oys and _ > I.

The rationale behind this expression is that the initial

semi-elliptical flaw will grow in a self-similar manner, i.e.,

keeping a/2c constant until the crack depth a is exactly equal to

the thickness B, as shown in Figure i.I. At that time, it is

considered that the flaw becomes a through crack with a total

length of 2c, with 2c = (2c/a)oB, where the subscript 'o' stands

for 'initial' Finally, to prevent the crack from running

unstably in the longitudinal direction, i.e., bursting, it is

then required that the toughness Kic be bigger than the applied K

given by Kap p = Oop(Kc)0-5

The weaknesses of this Standard are these: (i) the above

equation only holds for a/2c = 0.5, (2) the flaw shape is

considered to always remain elliptical with constant a/2c, and

(3) the whole analysis is based on LEFM concepts.
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On the other hand, for the real materials, thicknesses, and

typical flaws of interest, the situation is markedly different

from the one assumed above, as can be seen in Figure 1.2. The

cracks, clearly, do not grow in an elliptical self-similar

manner, but rather in a very complex shape, with a dimension in

the direction parallel to the surface, longer in the interior

than on the surface. Moreover there is no guarantee that this

dimension can be conservatively estimated by taking the

original(2c/a) o and multiplying by B.

1.4 This Project

The EPFM Methodology has evolved significantly in the last

several years. Nevertheless, some of these concepts need to be

extended further before the whole methodology can be safely

applied to structural parts. Specifically, there is a need to

include the effect of constraint in the characterization of

material resistance to crack growth and also te _xtend these

methods to the case of 3D defects.

As a consequence, this project was started as a 36 month

research program with the general objective of developing an

elastic plastic fracture mechanics methodology to assess the

structural reliability of pressure vessels and other parts of

interest to NASA containing defects.

The project is divided into the following tasks.



Task i. _ and Thickness Effects

1.8

This task includes the study of the problem of

constraint and thickness effects, in different specimen

sizes and geometries in materials of interest.

Specifically, the following subtasks will be performed:

a)

b)

c)

d)

The large body of available data trom centers

around the World will be gathered to study this

effect in specimens of different size and

geometry.

Resistance to crack growth tests will be conducted

using specimens of different size and geometry, on

at least one material of interest. The material

will be provided by NASA; Georgia Tech will

machine the lab specimens.

Characterization of fracture surfaces to determine

mechanisms of fracture, and typical surface

dimensions will be performed using modern

quantitative metallographic techniques.

Using the information obtained, models will be

developed to describe the effect of constraint on

the growth of cracks under elasti,, plastic

conditions.



Task 2. Three _i_ Cracks

1.9

The problem of applicability of EPFM concepts to 3D crack

problems, in materials of interest, will be studied in this task.

Specifically, the following subtasks will be performed:

a) Plates containing surface cracks with different

initial crack aspect ratios and relative crack to

plate geometry dimension will be tested. The

evolution of the crack shape (planar) and the

crack surface displacement with loading will be

determined.

b) Analytical and numerical efforts will be devoted

to determine values of J and constrairit along the

crack front.

c) The models and information obtained from Task 1

will be used here to predict the behavior of these

3D cracks.

d) Predictions and experimental resullts will be

compared and, if necessary, refinement of the

models will be made.



Task 3.

1.10

Finally, the body of information obtained in the previous

tasks will be organized in a MethodologY format to assess the

structural integrity of parts containing defects, in the spirit

of the current LBB criterion.

1.5 This Report

This report covers the activities of the period March 1993

through August 1993. In this period, full advantage was taken

from the experience and knowledge gained in previous projects

[1.6-1.9]. In particular, some efforts were devoted in this

project to complete and extend previously obtained results.

The report is organized as follows: In Chapter 2, a

computer modelling algorithm used to simulate the growth of a

semi-elliptical surface crack is explained in detail. This is an

excerpt from the thesis of D.W. Boatwright [1.9].

In Chapter 3, a finite element investigation is presented.

This investigation, an excerpt of the thesis of W.J. Curtin

[I.I0], compared the theoretical (HRR) stress field to that

produced by elastic and elastic-plastic models. The difference

in these stress fields is the constraint effect.

In Chapter 4, experimental efforts to characterize three

dimensional aspects of fracture present in "two dimensional", or

planar configuration specimens have been continued. This

discussion specifically contains a preliminary discussion
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associated with the determination of, and use of, crack face

separation data.
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Figure 2 Growth of a Part-Through Crack to Critical Size



CHAPTER II: An Excerpt from DW Boatwright's Thesis

CHAPTER III

COMPUTER MODELLING OF SURFACE CRACK GROWTH

The best way to determine the physical response of a

cracked body to a particular set of loading conditions is to

run a test on the structure in question. Unfortunately, this

is not a practical solution in many cases. One alternative to

testing is to use a mathematical model that can predict the

behavior of a test specimen in any given situation.

In order to use a mathematical model, it is first

necessary to run a series of mechanical tests to characterize

to behavior of the specimens. Once these tests have been run,

it is then possible to use the test data to develop a valid

model for the specimen in question. Today, libraries of

functions exist that can be used to model most common fracture

specimens given the material properties [18,22].

After developing a mathematical model that accurately

predicts test results, the key parameters of the test can be

changed to observe their influence on test results.



Currently, the only way to model a surface crack specimen

is to run a three-dimensional finite element model. This

modelling process is computationally intensive and very time

consuming since a new finite element mesh must be constructed

for each iteration in the solution process.

It would be far more efficient to develop a special

purpose fracture mechanics based computer program designed to

model surface crack behavior. One of the goals of this work

was to do just that. This chapter covers the development and

testing of a fracture mechanics based computer program for

modelling the behavior of surface cracks.

The intent in the development of this computer program

was to develop a program general enough to model any surface

crack geometry in any material that is under J-dominant

conditions. Given the material deformation and fracture

properties, the program should accurately predict the

distribution of crack growth along the front.

The program described in this chapter represents a

continuation of the work begun by Sheldon and Ernst [14,15] in

computer modelling of surface crack growth. The new version

of the program attempts to overcome some of the problems that

surfaced in the first program. There are also concepts

integrated into the current program that were not in the

original program.



One new feature that has been introduced into the current

version of the program is displacement control rather than

load control. The current version of the program uses plastic

displacement as the evolutionary variable. In the first

program, the load was increased in small increments to

simulate a mechanical test. One problem that arose from the

use of this method was that virtually all the crack growth

occurred in the last few load steps. Use of displacement

control corrected this problem because with displacement

control the load increases very quickly at first and very

slowly around maximum load which is where the majority of

crack growth occurs. Another feature of displacement control

is that the simulation can continue past the maximum load;

that is, the applied load can decrease. This feature would be

useful in leak-before-break analyses.

The program uses the key curve to calculate the load at

each displacement step given the plastic displacement and the

current crack geometry. The load and the crack geometry are

then used to calculate the fracture variables along the crack

front.

The incrementing of plastic displacement is not intended

to directly parallel an actual mechanical test. Plastic

displacement was chosen because it was a nondecreasing

variable in the key curve equation. The other possible



evolutionary variables were load, the crack dimension a, and

the crack dimension c.

The program does not use any component of displacement in

the calculation of the conditions along the front. Although,

it is possible to calculate the elastic and plastic components

of displacement in a real mechanical test, through unloading

compliance measurements, in order to relate the simulation to

an actual test.

The original modelling technique used by Sheldon [15]

divided the crack front into a collection of discrete points.

Sheldon assigned values of a and c to each point along the

front by fitting an ellipse to the point in question by using

the position of the point, the position of the center of the

ellipse, and the slope at that point as determined from the

neighboring points. Sheldon then used these variables in a J

calculation method as developed by McCabe, Ernst, and Newman

[16] which was based on the Newman-Raju equations [7]. A

value of J was calculated for each point along the front. A

value of crack extension at each point was obtained from the

material resistance curve, and the point was then advanced in

the direction normal to the simulated crack front.

The original program would divide the crack front into

two halves when the program detected that the surface crack

was mushrooming, that is, when the crack started growing in a

non-self-similar way. The program considered the crack to be



mushrooming when it detected a point with an approximately

vertical slope. The section of the front from that point to

the surface was modelled as a through crack with a crack

length equal to the x coordinate of the point in question.

The remainder of the crack front was modelled as a semi-

elliptical crack as before.

While this scheme showed promise, there were some

complications that could be avoided by the use of a different

model. The main problem was that calculating J using two

different models led to problems in establishing continuity of

J and dJ/da along the front. The program scaled the J values

in order to maintain continuity of J, but no consideration was

given to continuity of dJ/da. The discontinuity in dJ/da led

to excessive crack growth at the point of the discontinuity.

In part, the program developed in this chapter represents

an evolutionary step forward. Modelling techniques that

caused problems in the original program were modified. The

use of two separate J estimation methods has been replaced by

a single method that is used for all the points along the

crack front. In addition to the evolutionary modifications,

new features were added to the program to better model the

fracture process. The primary addition to the program was the

incorporation of constraint effects. The original version of

the program as written by Sheldon [15] did not consider



constraint effects. The techniques used to model crack growth

will be described in the following sections.

Cq_puter Prouram Development

This program models the evolution of the crack front in

a displacement controlled test of a rectangular surface crack

panel in tension. The program requires prior knowledge of the

material deformation properties, the plane strain resistance

curve, and the key curve for the specimen. The plane strain

resistance curve is intended to represent the material

fracture properties for the most constrained state of stress,

and the key curve for the specimen will be used to relate the

plastic displacement and current crack geometry to the load.

The key curve was obtained using the same material and

specimen geometry under blunt notch, or non-growing crack,

conditions as explained in Chapter II.

The program simulates a growing crack test by

incrementing the plastic displacement. The user must enter

the final plastic displacement along with the initial semi-

elliptical crack geometry. The conditions along the crack

front are recalculated and updated with each displacement

step. The user is free to specify the number of displacement

steps in any simulation.



In this model, the crack front is represented by discrete

points. The user is free to specify the number of points along

the crack front. Specifying a large number of points allows

the user to see how the front evolves in detail, but the

program takes longer to run. The solutions calculated are

insensitive to the number of points along the front; so, there

is no computational advantage gained by specifying a very

large number of points.

It was sufficient to only consider one half of the front

due to the symmetry of the problem. Boundary conditions on

crack growth direction were applied at the surface and at the

deepest point in order to enforce symmetry. Modelling only

half the crack front halves the time it takes to run a

simulation without affecting accuracy.

This program was written in GW_BASIC. A listing of the

computer program is included in the Appendix.

J Estimation alonq the Crack Front

This program models the fracture process using a J

resistance curve approach that incorporates constraint

effects. This methodology was based on work done by McCabe,

Ernst, and Newman [16]. In the first version of this program

as developed by Sheldon and Ernst [14,15], a one-parameter

approach to predicting fracture was used. In that program, J

was calculated at each point along the crack front; then, the



crack extension was calculated from the material R-curve.

This approach did not consider constraint effects. In the

current version of the program, a two-parameter approach

incorporating constraint was used to calculate crack extension

at each point along the crack front. The first step in

modelling the crack extension across the crack front was to

calculate the value of J at each point on the front.

In Chapter I, it was shown that, given two cracked bodies

subjected to the same loading history that differ in crack

length by a small amount, the J integral can be defined as the

difference in potential energy divided by the difference in

cracked area. For a body where the crack only has a length

dimension, the difference in cracked area, dA, is equal to the

specimen thickness multiplied by the difference in crack

lengths. It is not so simple for a geometry such as a surface

crack that requires two length parameters. For example, a

semi-elliptical surface crack requires the two length

parameters a and c.

For a semi-elliptical surface crack, Ernst [23] showed

that the expression for the global value of J is linked to the

way the virtual crack extension is taken. Ernst examined

three different ways for taking the virtual crack extension:

i) increasing c, keeping a constant, 2) increasing a, keeping

c constant, and 3) increasing a and c, keeping a/c constant.



The following equations for the plastic portion of J were

developed by Ernst. The only difference between the three

cases is the expression for the coefficient _pl"

Vp3

np_ f P dvp, (3.1)

o

Taking the key curve equation, which relates load and plastic

displacement, and substituting it for the variable P yields

the following expression.

%1 = _o (=12) ac N+I [Wt_o]
(3.2)

The expressions for _pl turned out to be independent of the

a/c and a/t ratios. These expressions are shown in Table 3.1.

Table 3.1: Expressions for _pl

Variable

Held Constant

a

c

a/c

plastic

Expression

-(p+m)12

p/2

-m/2



At this point it was necessary to determine which method

should be used to calculate the global J and how that global

J relates to the values of J along the front. The following

normalization scheme was developed for this purpose.

The total system energy in a cracked body can be

expressed as follows.

W = E + U

W = total energy supplied by external forces

E = energy spent growing the crack

U = strain energy

(3.3)

The energy release rate for an

extension can be written as follows.

1

8E _ 1 I J ds dn8A 8A
o

incremental crack

(3.4)

The differential element ds represents an element along the

crack front, and the differential element dn represents an

element normal to the crack front. The above integral

expression should be integrated along the entire crack front.

In addition, taking the derivative of the energy balance

with respect to the virtual increase in cracked area yields

the following relationship.



6w (BE + b_
-- = (3.5)
6A 6A

Replacing the incremental quantities in the above

equation with experimentally measurable global quantities

yields the following equations for constant displacement

conditions.

6E (_U) (3.6a)8-7 =- 37 _

V

6E _ d f Pdv6A dA
0

(3.6b)

The above result is entirely independent of the geometry of

the surface crack.

Now, for the case of growth of a semi-elliptical surface

crack at a constant aspect ratio, Ernst shows that the

following equations can be used to define ds,dn, and dA in

terms of a, c, and elliptical angle, _ [23].

ds = _(c cos_)2 ÷ ¢a sin_)2 d_ (3.7a)

dn = 2 c_(c cos_) 2 + (a sin_) 2 da (3.7b)



dA = _ C da (3.7c)

Using these relationships allows the following definition

of the energy release rate.

_ 2 _j(#) d_ (3.8)
6E _ j,_ = (J),Ic aoaa=_ -

0

This result shows that the global J obtained by taking

the virtual crack extension with a/c constant is numerically

equal to the linear average of J along the crack front.

Since no assumptions were made regarding material

behavior, the above equation applies for the elastic portion

of J, the plastic portion of J, or the total J.

This J estimation technique uses the observation that the

distribution of the plastic portion of J along the crack front

follows the distribution of the elastic portion of J for

moderate amount on deformation [24,25]. This relationship can

be expressed as follows.

= k G(¢) (3.9)

Therefore,

J(¢) = (I ÷ k) G(¢) (3.10)



Following this line of reasoning the linear averages

along the crack front should also be related as follows.

k = (3.11)

Out of convenience, k was incorporated into a coefficient

D that is independent of applied stress.

k
D - (3.12)

o(n_ 1)

By substitution, the value of D can be shown to be equal to

the following expression.

D = 0.224 n W (___)1-Pn(t)-2-mn
_0 (n ÷ i) (G.vg/O 2) (3.13)

The values of J along the crack front can be calculated using

the following formula.

J(_) = G(_) (I + D o"-I) (3.14)

Now, the linear elastic portion of J as predicted by the

Newman-Raju equations can be used with the above equation to

perform an elastic-plastic J analysis along the crack front.

Since the Newman-Raju equations are based on a semi-

elliptical crack front, it was necessary to assign values of



a/c and a/t to each point. A value of a/c was assigned to

each point based on the a/c of an ellipse centered at the

origin that passed through the deepest point and the position

of the point in question. The value of a/t was taken to be

the depth of the central point divided by the thickness. This

method is illustrated in Figure 3.1.

While this method of assigning values for a/c and a/t at

each point is admittedly crude, the method was chosen because

of its simplicity. The fact that this method is applicable at

every point along the crack front prevents some of the

problems that developed in the first attempt at simulating

surface crack growth as developed by Sheldon [15].

Crack Growth Direction

For the purposes of this computer program, crack growth

was assumed to occur normal to the local crack front as

defined by the points that represent the evolving crack front.

The normal direction was determined by taking a numerical

derivative at the point in question.

As boundary conditions, the point at the front surface

was constrained to growth along the surface, and the deepest

point was constrained to growth through the depth.
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Figure 3.1: Procedure for Fitting an Ellipse

Crack Tip Constraint

Today, it is accepted that constraint influences the J R-

Curve. ASTM acknowledged this idea in their recommendation of

bend specimens for determining R-curves [17]. This

recommendation was based on the fact that bend specimens

exhibit more in-plane constraint than tension specimens, and,

thus, produce a more conservative design specification. It

should be noted here that two specimens with identical out-of-

plane constraint, e.g. plane strain or plane stress, can

exhibit different levels of in-plane constraint.



The typical differences in the R-Curves for bend and

tension geometries illustrates how different levels of

constraint affect the fracture properties of a material. The

rate of change of the resistance curve slope is a function of

constraint. Specimens under a high level of constraint have

a slope that is lower than for low constraint configurations.

Thus, the R-Curve for a high constraint situation would be

below the R-Curve for a low constraint situation.

It has been widely shown that a one parameter approach to

modelling surface crack growth is inadequate [26,27,28]. The

incorporation of a measure of constraint into this computer

program is an attempt to address the problems inherent in a

one-parameter approach.

It has been shown by Ernst, Rush and McCabe [19] that

there is a relationship between dJ/da and the level of

constraint at the crack tip which they called (_el) -1. The

variable (_el) -I has been shown to characterize constraint.

This variable was defined as follows.

._ - p
G

(3.1s)

In calculating derivatives with respect to a virtual

crack extension, a problem is again encountered in defining

the manner that the virtual crack extension occurs. For the

purpose of derivatives, the crack extension is assumed to



occur normal to the equivalent ellipse that is fit at the

point in question. This convention was adopted in the

interest of consistency since the values for J are calculated

from the equivalent ellipses.

For the purposes of this computer simulation, dJ/da was

chosen as a tool to incorporate constraint into the modelling

of surface crack behavior. Briefly stated, the procedure

calculates constraint effects by comparing dJ/da as calculated

at a point on the crack front to dJ/da as calculated from the

plane strain material resistance curve.

Constraint effects were calculated in the following

manner. The value of dJ/da was calculated for each point on

the crack front. These values were obtained by calculating

the value of J a small distance ahead of the point in

question. Another equivalent ellipse was fit through the new

incrementally advanced point. The a/c and a/t obtained from

the three point fit were then used to calculate J. The value

of dJ/da was found by dividing the difference in J values by

the distance between the points.

The methodology for incorporating constraint into the

crack growth model began with the R-curve for (re1)-1 equal to

zero. This R-curve represents the most constrained situation

possible and served as the reference for the fracture

parameters calculated in the program. The following equation

was used to model the R-curve.



A azefezence = _o j3 + _o j2 + 7o J (3.16)

The R-curve for the side-grooved compact tension specimen

was used in the computer program because the side-grooved

compact tension specimen R-curve represented the most

constrained geometry tested. The bend type loading and the

side-grooves contributed to the high level of constraint in

these specimens.

The derivative of Equation 3.16 served a reference to be

compared to the values of dJ/da calculated in the program.

zefe_ence 3 ao J2 + 2 _o J + To

The factor F was defined as follows.

(3.18)

The

related

related.

prior assumption that constraint and dJ/da are

implies that constraint and the variable F are

Substituting Equation 3.17 into Equation 3.18 yields

the following.



dJ F

da 3aoJ 2 + 2_J + "_o
(3.19)

Substitution of the above equation into the

definition for crack extension yields the

expression.

integral

following

_[ 3ao J2 + 2_oJ + 7oAa= F
dJ (3.20)

Ill o

Integrating provides the formula for crack growth which

incorporates constraint effects.

A a = Aaze_,_,,c, (3.2 I)
F

Every point along the crack front had unique values for

J and F. Together, the two parameters were used to calculate

the crack extension at each point along the front. Once every

point on the front had been advanced the appropriate amount,

the plastic displacement was incremented, and the process

began again at the new load.



Comparison of ComPuter Output t_ ExPerimental Data

It was initially hoped that this computer program could

be used to model the 21-6-9 stainless steel surface crack

tension specimens that were tested as part of this work, but,

as shown in Chapter II, a J-based approach is invalid for this

material. As a consequence,

inappropriate for prediction

stainless steel specimens.

While this program is

this computer program is

of crack growth in these

admittedly inappropriate for

modeling the fracture behavior in these stainless steel

surface crack specimens, it is convenient to use the material

data developed in testing these specimens to test the general

behavior of the program. The purpose for using the data from

the stainless steel specimens is simply to check the program

for instability, discontinuities, or any other obvious

shortcomings.

The results of three computer simulations are shown in

Figure 3.2, 3.3, and 3.4. These figures compare the actual

test results to the computer simulation for surface crack

tension specimens SCI6, SCII, and SC4, respectively. These

surface crack specimens were chosen because they were all

tested to a point past their maximum attainable load and they

all exhibited significant crack growth. More specifically,

these three specimens were chosen because their different
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aspect ratios. This allows an analysis of the performance of

the computer program over a wide range of aspect ratios.

Discussion and Conclusions

The results of the computer simulation using the data

from the stainless steel surface crack tests shows that the

program performs as expected. The new crack fronts calculated

by the program do not exhibit any discontinuities or

instability problems. In order to effectively evaluate the

accuracy of the program, it would be necessary to compare the

predicted results to the experimental results obtained from a

set of surface crack specimens tested under J-dominant

conditions.

The experimental results presented in Chapter II show

that the growth of these cracks is a deformation process. The

photographs of these same specimens in Chapter II show the

extensive plastic deformation around the crack mouth and at

the back surface. The fact that the maximum loads for these

specimens can be accurately predicted from deformation theory

serves to reinforcing the assessment that a fracture mechanics

based simulation for this material is inappropriate.

It is not possible to judge the simulation results based

on a comparison with the stainless steel surface crack



P

specimens tested here. To make a definitive judgement on the

accuracy of the simulation, it would be necessary to compare

results for a material that was known to be under J-dominant

testing conditions.
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CHAPTER Ill: An Excerpt from WJ Curtin's Thesis

CHAPTER III

FINITE ELEMENT INVESTIGATION OF

CONSTRAINT PARAMETER

Introduction

Constraint is defined as the degree of crack tip stress triaxiality and is

commonly quantified by the higher order crack tip stress and displacement

terms (i.e. by T-stress or Q). Therefore, the elastic-plastic near tip fields are

characterized by two parameters, J and a constraint parameter. The goal of the

fmite element analysis (FEA) investigation was to determine the coefficients of

the higher order crack tip stress and displacement terms. As a subsequent step,

the coefficients of the higher order terms were compared to the earlier proposed

constraint parameter, (L_) -_. The finite element investigation for this work is just

the first step in a larger finite element investigation. That is, this work has

started the development of an FEA data base containing the values of the higher

order stress and displacement term coefficients. Future finite element

investigation to determine these higher order coefficients shall include many

other geometries. For example, three-dimensional finite element models of

planar specimens will be developed and investigated. Upon completion of all

FEA work the coefficients shall be used to compare various constraint



parameters-- including (L.,)-x,q, Q, T-stress, and others -- to the higher order

terms.

The coefficients of the higher order stress and displacement terms

represent one part of a larger database which shall also include information on

various constraint parameters and experimental results. The FEA results are an

important part of the database; however, experimental results are critical to the

evaluation of a constraint parameter. Experiments are very important because

of the processes which lead to fracture. Ductile crack growth occurs due to

micro void nucleation, growth, and coalescence. FEA cannot account for the

processes which lead to ductile crack growth. Therefore, both experimental and

FEA results are required in order to judge the ability of a second fracture

parameter to characterize constraint. Each parameter shall be scrutinized upon

completion of the entire database.

Three types of FEA models were developed for this study -- a two-

dimensional linear elastic center crack tension (CCT) model, a two dimensional

elastic plastic CCT model and a three-dimensional linear elastic surface crack

tension (SCT) model. Since this study has concentrated on elastic-plastic three

dimensional cracks both a three dimensional model and an elastic plastic model

were developed for the initial part of the finite element constraint parameter

investigation.



•"1,'o

Finite Element Models

Linear Elastic CCT Model

All finite element work done for this study utilized ABAQUS software

[28]. The linear elastic CCT model consists of a two dimensional plane strain

mesh using two planes of symmetry (Figure 3.1). That is, only one quarter of

rar,._

M,aNJtle,d
, P,oesmDm

To

Sg'_tr'_

Figure 3.1" Center Crack Tension Model

the specimen was modeled due to symmetry considerations. The mesh contains

8-node biquadratic hybrid elements with reduced integration. The model

consisted of 392 elements and was loaded in tension. A plot of the mesh and a

sample of the ABAQUS input file are shown in appendix A.* A total of five

CCT meshes were developed for the analysis. The crack length over width ratio

(a/w) varied from 0.25 to 0.75 for the five meshes (Figure 3.1). For consistency

purposes, the same element arrangement near the crack tip was used for all five

models. In order to correctly model the 1/47 stress singularity for the linear

*Appendix A not included



elastic case, quarter point node elements [29] were used at the crack tip and all

crack tip nodes were tied together. The element size (radial direction) at the

crack tip was 0.0006e for the a/w--0.75 mesh where e--w-a.

Linear Elastic SCT Model

The linear elastic SCT model consisted of a three dimensional mesh

using two planes of symmetry (Figure 3.2). The mesh contains 20-node

,_'flce

Crack

\
Modeled
PorUon

Figure 3.2: Surface Crack Tension Model

biquadratic displacement hybrid brick elements with reduced integration. The

model consisted of 1764 elements and was loaded in tension. A plot of the

mesh and a sample of the ABAQUS input file axe shown in appendix B* In

order to correctly model the 1/,,/7 sa'ess singularity for the linear elastic case,

quarter point node elements were used at the crack tip and all crack tip nodes

were tied together [29]. The element size at the crack tip (radial direction) at

Appendix B not included



¢=900 was 0.0024d where d--t-a. The modeled surface crack displays a shape of

a/c=l.O and a/t=0.5 (Figure 3.2). The modeled specimen thickness (t) was 1.0

inch and the half width (w) was 2.0 inches.

Elastic Plastic CCT Model

The elastic plastic CCT mesh was identical to the linear elastic CCT

mesh except for some adjusunents. In order to model the r stress singularity for

the elastic plastic analysis, quarter point node elements were not used at the

crack tip and the crack tip nodes were not tied together. This allows for the

crack tip to blunt for the elastic plastic case. The Ramberg-Osgood non-linear

material deformation model was utilized for the elastic-plastic CCT model. In

one dimension the Ramberg-Osgood model is,

where,

- _- (3.1)
6 o o"o

and E is Young's modulus.

o'o
60=B

The stress, strain, and yield strength are designated

by a, c, and a0 respectively. The material dependent constants ot and n are the

yield offset and hardening exponent. The material properties used in the model

are displayed in table 3.1. These constants correspond to the properties of a

typical low carbon steel. The element size (x direction) at the crack tip was

0.001e for the a/w=0.75 mesh where e---w-a (Figure 3.1). Similar to the linear

elastic model, various a/w values were analyzed for the elastic plastic CCT

case. Each model was loaded in three steps. The first load step went up to 70%



of limit load. The second step went up to 85% of limit load and the third step

went up to 100% of limit load. A sample of an ABAQUS input file is shown in

appendix C.

Table 3.1: Material Properties

MATERIAL PROPERTY

Youns's Modulus (E)

Yield Offset (cQ

Strain Hardenin 8 Exponent (n)

Yield Strength (09)

Flow Stress (of)

of a Typical Low Carbon Steel

VALUE

30.0 E6 [psi]

0.5

40,000 [psi]

50,000 [psi]

Theoretical Background

In order to calculate the coefficients, the dependence on r must be

determined for each of the higher order terms in the crack tip stress and

displacement series (Figure 3.3). Williams [30] and Westergaard [2] have

developed methodologies to determine the higher order terms dependence on r

for linear elastic material properties. Sharma and Aravas [32] and Li and Wang

[31] have formulated the higher order terms using an asymptotic analysis for a

Ramberg-Osgood hardening material.
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Figure 3.3: The In-plane Crack Tip Stress and Displacement Locations

Linear Elastic Background

For the linear elastic case, the format of the higher order stress and

displacement fields can be formulated using two early approaches developed

by Williams [30] and Westergaard [2]. Williams derived expressions for the

crack tip stress and displacement fields by the eigenfunction expansion method.

Utilizing this method for a symmetric stress distribution (mode I) in an infinite

body with traction free crack faces, the crack tip stresses at 0=0 ° and the crack

tip displacements at 0=180 _ were derived. The results follow:

o'=(r,0°)= - (b_ +b_) r -] +T x + (_ +b3) ri+... (3.2)

[3 l ]cryy(r,O°) = - (b, +b3) r -/+ Ty + (b, +b3) r_+... (3.3)



]' ]" }
where T,, T,, b, and b, are constants that depend upon geometry and loading

conditions. H is defined as v/(l+v). Poissons ratio is v and g is the shear

modulus. Williams [30] showed that 3". and T, are zero for _ provided that

the crack faces are traction free. However, more recent investigators have

determined that T. should not be zero [21 ]. Notice that the r'a term in equations

3.2 and 3.3 and the r_ term m equation 3.4 both depend on b, and b,.

Westergaard [2] was the first to demonstrate that the crack tip stress

fields can be derived for certain geometries by introducing an analytic function,

Z(z), where z=x+iy and #= _2-_. The normal stresses and displacements

utilizing the Z function are,

or= = ReZ- ylmZ' (3.5)

cryy= ReZ + y Im Z' (3.6)

uy = 1- Vim 2- yReZ (3.7)
/_ 2/_

where the bar over Z indicates integration with respect to z.

function of the form,

Z isconsidereda

Z = co + c: + c2z 2+.. (3.8)
47

where the c's are complex numbers.

The coefficients of the r ,'_terms in equations 3.2 and 3.3 were defined as

y_ and y,, respectively. The coefficient of the r _ term in equation 3.4 was

defined as B. The relationship between the ,/'s and B for a two dimensional



linear elastic stress state was determined using the Westergaard stress function.

For mode I loading and y=0, the second terms on the right hand side of

equations 3.5 and 3.6 drop out. Note that Tx=7, when y-0. After expansion of

the complex numbers, evaluation of the normal stress at 0--4)0, and evaluation of

the displacements at 0=1800, the relationship between T and B was determined

for a two dimensional cracked body. This relationship was found to be,

1 (3.9)B=-

where E'=E for plane stress and E'=E/(1-v 2) for plane strain.

elastic models a normalized B was defined as,

For the linear

B* = B E' ./-___ (3 10)

and a normalized ,f as,

r* = y--K-- (3.11)

where K is the stress intensity factor. By combining equations 3.9 to 3.11, the

relationship between B* and Y* was determined as,

B*=-ly * (3.12)

Rice [3 8] introduced the boundary layer approach to determine the crack

tip stress and displacement fields. The boundary layer approach assumes that

the boundary value stresses along the crack face are given by the extension of
.,°

validity of the singular term in the elastic stress solution (Equation 1.1) to large



n4
(i

values of r and small scale yielding. Larsson and Carlsson [21] introduced the

modified boundary layer formulation for the crack tip stress fields. They

included a constant T-stress term with the singular term in the boundary layer

stress field formulation (Tx in equation 3.2). For a two dimensional infinite

body Larsson and Carlsson determined that only the o= T-stress term (T,) was

non-zero. However, Nakamura and Parks [31] have determined that three T-

stress terms are present in linear elastic three dimensional cracked bodies. They

determined that the o=, a=, and _= crack tip stress fields required non-zero T-

stress terms for regions behind the crack tip. For a two dimensional elastic-

plastic cracked body, O'Dowd and Shill have demonstrated the existence of

constant higher order terms in both the o_ and % fields [22]. They introduced

these higher order stress terms using the Q parameter.

Elastic-Plastic Background

For the elastic-plastic analysis, the format of the higher order stress and

displacement fields have been formulated by Sharma and Aravas [32] and Li

and Wang [33]. These researchers considered a two-dimensional crack problem

in a homogenous Ramberg-Osgood elastic=plastic material. The first two terms

of the crack tip stress series and the first three terms of the displacement series

were formulated by assuming an asymptotic expansion for the stress terms in

the form of,

cry(r, 8) = r"cr,j(°)(0) + r'cr_O)((9)+... (3.13)
cro



as r--,O and s < t. Substituting equation 3.13 into the governing equations, the

first two terms in the stress and the first three terms in the displacement fields

were determined as,

a6 0o"oI.

= . _(°)(e)rV¢"÷')
aCotTol.

(3.15)

+a_o (j o)' aeocrol, t,, t_j, + +...

where Q0 is a dimensionless constant that controls the magnitude of the second

terms, s = -1/(n+l), and a,°_ is an elastic strain resulting from the singular stress

term. The governing equations include equilibrium, compatibility, and

constitutive equations. The formulation of equations 3.14 and 3.15 neglect the

effects of specimen geometry and far field loading and assume that the higher

order terms are separable in r and 0. Using a Galerkin finite element technique

t was determined to be 0.055 [32] for a two dimensional crack in plane strain

with a material strain hardening exponent of 5.

Procedure

The field values of the normal crack tip stresses (¢_= and 6,,) along r at

0=0 o and the crack mouth opening displacements (u,) along r at 0=1800 were

calculated by each of the finite element models (Figure 3.3). The coefficients



of each higher order term in the crack tip stress and displacement series were

determined by curve fitting the FEA data.

Linear Elastic Procedure

The following formats which are similar to equations 3.2 through 3.4

were utilized to curve fit the crack tip stress and displacement fields calculated

by FEA for all linear elastic models:

1 !

a=,(r,0°) = D,r = + Tx + rxr _ (3.16)

I 1

cry (r, 0° ) = D 7 2 + Ty + ryr _ (3.17)

! 3

uy(r,180°) = Ar: +Br: (3.18)

where r is the distance from the crack tip. The first terms (r ,_ terms in

equations 3.16 and 3.17 and r '_ term in equation 3.18) were subtracted from the

field values determined by FEA. The remaining higher order terms were curve

fit using a least squares methodology. The curve fits yielded values for the

coefficients T_, y_, T,, _,,, and B. Note that the modified boundary layer

approach was used to curve fit the higher order terms [21 ].

The range near the crack tip over which the stresses and displacements

were curve fit needed to be determined. For the linear elastic models, the

element stresses and nodal displacements (field values) very close to the crack

tip which were affected by the quarter point node elements were omitted from

the curve fitted data. For the linear elastic CCT model, the curve fitting range



did not significantly affect the values of the coefficients. However, a criterion

was used to determine the outer bound of the curve fitted data. The outer bound

was determined using the T-stress. T-stress is the normal stress in the x-

direction acting on the crack face at 0=181> [21]. The linear elastic CCT finite

element analysis determined that o,_ was constant over almost the entire crack

face. This T-stress value at 0=1800 was then compared to the T, values from

curve fits extending over various distances from the crack tip at 0=0 °. The value

of T varied, although not significantly, depending upon the distance from the

crack tip over which the higher order a, terms were curve fit. Therefore, the

curve fit range which displayed the same T, value as the T-stress value along

the crack face at 0 = 180 ° was used to determine the coefficients in equation 3.16

for the linear elastic CCT model. The same curve fit range was then used for

the higher order terms in equations 3.17 and 3.18.

For the linear elastic SCT model, the in-plane T-stress at 0=1800 was

constant over much of the crack face. However, this T-stress did not coincide

with the curve fitted T_ values (0=0 °) possibly because of the three dimensional

stress state. That is, the out-of-plane stresses may have affected the T-stress

values. Therefore, the outer bound was determined as the distance from the

crack tip over which the curve fitted coefficients best represented the FEA field

values close to the crack tip. The curve fitting outer bound was determined to

be approximately 0.2a for all elliptical angles, where a is the surface crack

depth.

After the successful defense of this thesis, an error with the curve fitting

format of equation 3.17 was discovered. The T, term should not be included in



the curve fits since it would invalidate the traction boundary conditions along

the crack face at 0 = 1800. The term was found to be zero for the linear elastic

CCT model curve fits. However, Ty was included in the curve fits for the linear

elastic SCT model. The inclusion of 1", is incorrect. See the Discussion section

of Chapter III for further information pertaining to the incorrect format.

Elastic-Plastic Procedure

The following formats which are similar to the asymptotic solutions of

equations 3.14 and 3.15 were utilized to curve fit the crack tip stress and

displacement fields for the elastic-plastic models:

tr= (r, 0 ° ) = D,p._r-''c"+') + Q_r' (3.19)

cr_ (r, 0° ) = D,p.yr -''c"*') + Qyr' (3.20)

uy(r, 180 °) = A,pr"C"*'_+ B,pr _"-'_''_' + C,pr'*' (3.21)

where r is the distance from the crack tip, s = -1/(n+l), and t = 0.055 for a two-

dimensional crack in plane strain with n=5. Note that the strain hardening

exponent does affect the exponent of r in all of the terms in equations 3.19 to

3.21. The HRR terms (r","_ terms in equations 3.19 and 3.20 and r,,c-.,) term in

equation 3.21) were subtracted from the field values determined by FEA. The

remaining higher order terms were curve fitted using a least squares

methodology to determine the values of the coefficients Q_, Q,, B,_, and C,p.



In developing a one or two parameter fracture methodology, one has to

assume that the asymptotic solution on which the criterion is based provides and

accurate description of the near tip stresses over distances that are sufficiently

larger than the fracture process zone [32]. Hutchinson [34] suggests that one

condition for a valid fracture methodology is,

R>38,

where R is the radius of the zone of dominance of the methodology's crack tip

stress solution and is sufficiently larger than the fracture process zone. The

crack tip opening is designated by 5,. Shih [35] has shown that the crack tip

opening can be determined by,

8, =d.
tro

where d n is approximately equal to 0.5 for n=10 and 0.2 for n=3 [35]. By

interpolation the approximate value of d, for n=5 is 0.3. By substitution of 8,

Hutchinson's condition becomes,

R>3d J--_.-
oo

Therefore, R extends a distance r/(J/t_o) = 1.0 from the crack tip when n=5. The

radial distance from the crack tip is designated by r. The data inside R was

omitted when curve fitting the elastic-plastic CCT stress and displacement data.

The outer curve fit bound was r/(J/tro) = 15. The outer bound is sufficiently

larger than R and is the approximate extent of the crack tip plastic zone for all

models.



Constraint Parameter Procedure

In order to compare with the higher order term coefficients (L,)-, was

calculated at constant load by,

(L.,)-'- ao (c"'-c') ]c2- , =
(3.22)

where G is the energy release rate and a is the crack length. Incremental steps

are designated by i+l and i. That is, aN' corresponds to an in-plane crack size

slightly larger than a '. In order to attain values for C_,, all FEA models were

modified so that the crack length was slightly larger than the original model.

G,v, was defined as the average value of Cr', and G' or,

G '*l + G'
G_, - (3.23)

2

The values of G were calculated by ABAQUS [28] using the internal J-integral

subroutine which calculates G using the domain integral method for all linear

elastic models. For the elastic plastic CCT models G was calculated as J. using

the EPRI [36] estimation scheme (see Equations 3.32-3.35).



Results

The coefficients were plotted as a function of a/w for the CCT models

and elliptical angle (t_) for the SCT model. In addition, the coefficients were

compared with (L_)-'. --

Linear Elastic CCT Model Coefficients

G was calculated by ABAQUS using the domain integral method for

each of the linear elastic finite element models. The ABAQUS value of G was

within 1% of the handbook [24] value for all linear elastic CCT models.

The crack tip displacement field values at 0 = 1800 were determined using

the linear elastic finite element models for aJw's ranging fi'om 0.25 to 0.75. A

sample of the crack tip displacements along with the singularity displacements

(At '_2term only) is shown in figure 3.4. After subtracting the singularity term in

the displacement series, where for plane strain,

t-g
A(O= 180°)= K J" (1- v) (3.24)

the value of B was determined by curve fitting for each crack size, where _ is

the shear modulus. Note that B is the coefficient of the r_ term in the

displacement series defined by equation 3.18. B was then normalized as B* by

use of equation 3.10. The results show an increasing trend with increasing a/w

(Figure 3.5). The normalized coefficient values are shown in table 3.2.
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Table 3.2: Higher Order Term Coefficients For Linear Elastic CCT Model

a/w

0.25

B*

-0.5275

0.375 -0.3482 -0.3962 0.939 0.972 1.894

0.50 -0.2615 -0.2820 0.671 0.748 1.832

0.625 -0.2157 -0.2117 0.462 0.603 1.951

-0.1737 0.0790.75 0.372-0.1576 2.520

The crack tip normal stress values in both the x and y directions at 0=0 °

were also recorded from the linear elastic CCT finite element analysis. The

fmite element values along with the singularity values are shown in figure 3.6.

The differences between the FEA and singularity values of the crack tip stresses

are due to the low constraint CCT geometry. That is, the crack tip stresses

deviate from the singular values for low constraint geometries. The singularity

terms, Dxr '_ and D_r% where

D,(O=OO)=Dy(O=OO)= K
(3.25)

were subtracted from the FEA field values of tr and t_,,,, respectively. The

form of equations 3.16 and 3.17 were used to curve fit the remaining higher

order terms in order to determine "Ix, T,, _,,, and )t values. Yx and "/, were

normalized using equation 3.11. Tx and T, were normalized using,

fro,, (3.26)T,*= T, K:
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where a,_ is the applied tensile stress. The curve fits determined that Ty was

zero for all crack lengths. This is consistent with the Larsson and Carlsson

modified boundary layer approach for a two dimensional linear elastic stress

state. That is, Larsson and Carlsson defined Ty as zero in equation 2.19. The

values of T_*, _,*, and _,_* are plotted versus crack length in figure 3.7 and their

values are shown in table 3.2.

Linear Elastic SCT Model Coefficients

G_ values for the SCT model were calculated along the crack front by

ABAQUS. These values of G, compared well with the numerical equations for

G_ developed by Newman and Raju (Equation 1.6). Figure 3.8 compares these

values of G z.

The displacements and stresses calculated by FEA were transformed to

the local in-plane coordinate systems at elliptical angles (_) ranging from 0° to

900 (see Figure 1.4). The local in-plane coordinate system is shown in figure

3.3 and is always perpendicular to the crack front.

The crack tip displacement field values at 0=1800 were determined using

the three dimensional linear elastic finite element model for elliptical angles of

0°, 22.5 °, 45 °, 67.5 °, and 90 o. An example of the FEA displacement field plotted

versus distance from the crack tip is shown in figure 3.9. The first (singularity)

term could not be subtracted from the FEA displacements because it is

dependent on the unknown out-of-plane stress state (i.e. plane stress or plane

strain). Along the front of a semi-elliptical surface crack the out-of-plane stress

state varies from approximately a state of plane stress at the surface (_--0 °) to an
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approximate state of plane strain at ¢=900. Therefore both A and B were

determined at each elliptical angle by curve fitting where Note that A and B are

displacement series coefficients defined by equation 3.18. The values of A

determined by curve fitting were close to the plane stress value of A at ¢=0 ° and

to the plane strain value of A at _--90 °. The-coefficient, B, was then normalized

as B* by use of equation 3.10. The results show an increasing trend with

increasing elliptical angle (Figure 3.10). The normalized coefficient values are

shown in table 3.3. A possible source of error is introduced when determining

the value of A by curve fitting. Error may be introduced because the A term is

the dominant term in the two term series. Therefore, relatively small changes in

A can introduce significant changes in B.

The crack tip normal stress values in both the local x and y directions at

0=00 were also recorded from the linear elastic SCT finite element analysis. An

example of these stresses versus distance from the crack tip is shown in figure

3.11. The singularity terms, Dxr,_ and DT'_ were subtracted from the FEA field

values of er,_ and er, respectively. Local values of the stress intensity factor, K,,

were used to calculate the singularity terms of equation 3.25. The form of

equations 3.16 and 3.18 were used to curve fit the remaining higher order terms

in order to determine Tx, Ty, _'x, and Tyvalues. The coefficients, yx and ,/_, were

normalized using equation 3.11 and "Ixand Ty were normalized using equation

3.26. The values of Tx*, Ty*, y*, and _,y* are plotted versus elliptical angle in

figure 3.12 and are shown in table 3.3. Note that after the successful defense of

this thesis the curve fitting format used to determine Ty* and yy* was found to

be incorrect. See the Discussion at the end of Chapter III for more information.
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Table 3.3"

0o

22.5 o

450

Higher Order Term Coefficients for Linear Elastic SCT Model

B*

-0.2672

-0.2175

-1.1519

-0.3677 0.1258

3.6601

_-0.8967

4.4192

-1.0449

1.0986

(L_)-,

3.055

1.2546

2.621

-0.1614 -0.4080 0.1700 -0.5552 1.3473 2.275

67.50 -0.1163 -0.4295 0.1849 -0.7787 1.1209 2.014

900 -0.0920 -0.4360 0.1640 1.910

Accurate stress values at _=00 were not obtained from the SCT model because

the finite element mesh was not free enough in the z direction to account for

surface effects. Therefore, the values of T* and y* were extrapolated between

the elliptical angles of 00 and 22.5° in figure 3.12. In addition, a possible source

of error was introduced during the evaluation of the singular stress terms. The

local values of G_ were calculated by ABAQUS. In order to determine K_, from

G_, knowledge of the out-of-plane stress state is required, but is unknown.

Therefore, the condition of plane stress was assumed during the evaluation of

the singular stress terms for the SCT model.

Elastic-Plastic CCT Model Coefficients

All coefficients were determined for the elastic-plastic CCT models at

70% of limit load (P0). The total J was calculated by ABAQUS using the

domain integral method for each model. The total J values were within 5% to

10% of the EPRI estimation scheme [36] values of J for all models. The plastic



zone size determined by the equivalent stress being equal to o o at 0=1800 was

observed to extend between r/(J/oo) = 13 and r/(J/a0) -- 20 for all elastic-plastic

models where r is the distance from the crack tip.

The crack tip displacement field values at 0 = 180 o were determined using

the elastic-plastic finite element models for a/w's ranging from 0.25 to 0.75. An

example of the crack tip displacements versus distance from the crack tip is

shown in figure 3.13. After subtracting the HRR term (A,j,_-',)in Equation 3.21)

from the FEA displacements, where

J )"'<"+')fly(180 °) (3.27)A,p( O= 180°) = ac o aeoCroI,

the value of B and C,, were determined by curve fitting. In equation 3.27, a

and n are the yield offset and strain hardening exponent respectively. I, is an

integration constant where I, = 5.0 for plane strain [37]. The material yield

strength is designated by Oo and E0= oo/E. J was calculated by ABAQUS and

_y(180 °) = 2.3678 [37]. B,_ and C,_ were then normalized where,

1

k, J J _,aEoCroI.

(3.28)

= ( 1 ) (3.29)

C,," aE(Cr°']'fC"jo_,--j.)lagocrol,---- )""+') (Jiao)

The coefficients, B,_* and C_,*, versus a/w are plotted in figure 3.14. The

normalized values are shown in table 3.4. B,_ and C,_ were normalized by the



0
0
6

÷

| +

elan

0

.m

U.



0 0 0
0 0 C)
0 O0 ¢O

I I

[u!/_] _,deo

 g gggg
I I I I I I I

II

\
\

\
\

°°"

°°
,,'

/"

I

,/

,°°

,J

°,,"

!
i
E
i
I
I

I
i
I

I

i

i
!
/
l

/

/
/

i
i

/
/

o 6 6 6 6 6 6
LO O LO 0 cO 0 LO

[uVI.] ,,,de_l

"o

¢0
o

c_

O')

c_

c-

0

0

E

OE
!

=I-UJ

_F

I.I=



coefficients of the respective terms in equation 3.17 to obtain a dimensionless

value. An additional 1/(J/60) term was then included to obtain normalized

units of [1/length]. The units of (L_)-' are also [1/length].

Table 3.4:

afw

Hi_er Order

176.620.25

0.375 104.21 1129.4 -1284.7 -1149.2 1.90

0.50 61.83 1265.5 -1311.3 -1213.5 1.90

0.625 51.40 1429.9 -1447.5 -1370.9 2.13

0.75 46.81 1793.5 -1868.8 -1809.7 2.82

Term Coefficients For Elastic-Plastic CCT Model

C,,* Q,* Q,* (L,)"

1206.2 -1583.8 -1391.9 2.30

The crack tip normal stress values in both the x and y directions at 0=0 °

were also recorded from the elastic-plastic CCT finite element analysis. An

example of the normal stresses versus distance from the crack tip (r) is shown in

figure 3.15. The HRR terms, D._,rl,c_., and D_,.rr"_"), where

)l/(n+l)
d &_(Oo) (3.30)

D,p.,(O=0°)= a¢otrol_

were subtractedfrom the FEA fieldvalues of o,_ and a,.,,respectively.The

values of the functions of theta were b., (0°)= 1.6836 and &,_(0°)=2.2172 [37].

The form of equations 3.19 and 3.20 were used to determine Q, and Q, by curve

fitting. All Q's were normalized in a similar fashion as B,_ using,
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The values of Qx* and Qy* are plotted versus crack length in figure 3.16 and are

shown in table 3.4. Both Qx and Q_ were found to be non-zero quantifies and

similar in magnitude. This is consistent with the findings of O'Dowd and Shih

[22]. These researchers introduced a Q parameter in order to extend J based

fracture mechanics to include low constraint geometries. The Q parameter

quantifies constraint by representing the second term in the near tip stress fields.

Their investigation determined that the higher order stress terms (Qxv and Qy r

in equations 3.21 and 3.22) were approximately constant but did show a slight

dependence on r for stresses in the forward sector of the plastic zone (-900 < 0 <

90°). The present findings also demonstrated that the higher order stress terms

showed only a slight dependence on r.

Constraint Parameter Comparison

The coefficients of the higher order crack tip stress and displacement

terms were plotted with (L_)-' for each of the finite element models. These

figures were developed as one part of a growing database of information on

crack tip constraint. The database also includes information on additional

constraint parameters and experimental results of various fracture geometries.

The ability of these parameters to characterize constraint shall be scrutinized

upon the completion of the entire database.

(L_) -1was calculated for each of the linear elastic CCT models. B* was

then compared to (L_)-,. Figure 3.17 and 3.18 show that -B* and -T* display
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similar trends when plotted with (L_)-' from a/w=0.25 to a/w=0.5, but at higher

values of a/w the trends diverge. Figure 3.19 displays Tx* and V_* with (Ld)-'.

For the linear elastic SCT model, local values of the proposed constraint

parameter were calculated by incrementing the size of the crack and applying

equation 3.22. Local values of virtual crack extension perpendicular to the

original crack front were used to calculate (L,_)-'. Figure 3.20 displays similar

trends for -B* and (L_-'. Accurate stress values at 6=00 were not obtained from

the SCT model because the finite element mesh was not fine enough in the z

direction to account for surface effects. Therefore, the values of T* and 7'

were extrapolated between the elliptical angles of 0° and 22.50 in figures 3.21

and 3.22. Tx* and -Ty* show similar trends with the proposed constraint

parameter when plotted as a function of elliptical angle (Figure 3.21). Figure

3.22 compares V,* and 7y* with (L_)-', but a similar trend was not found. Note

that an error was found with the higher order stress term coefficients for the

SCT model which is explained in the Discussion of Chapter III.

For the elastic-plastic models, the linear elastic portion of J (G or Jd) was

calculated using the EPRI [36] estimation scheme, where

J,_ = (3.32)
E

and,

=a+ 1 )2_xkn+lk _o)z----v)---- (3.33)a,# I +(P / Po

4
Po = "'__ tberl (3.34)

.43
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o,, + o"0 (3.35)
%= 2

where 13=6 for plane strain, P is the total applied load, and n is the strain

hardening exponent. The specimen thickness, length of the remaining ligament,

ultimate tensile strength, and yield strengtfi are designated by t, b, a.., and o0

respectively. Loaded to 70% of limit load (P°), the ABAQUS calculated total J

values deviated from the EPRI J, values by 15% to 35%. Therefore, 15% to

35% of the total J was due to plasticity (J,,). For the elastic-plastic CCT model,

B,,* and C,,* were then plotted with (L,)-' in figure 3.23 and 3.24, respectively.

Figure 3.25 displays Q* and Q* with the proposed constraint parameter.

Discussion

The coefficients of the higher order terms developed from the linear

elastic CCT model were compared with higher order term relationships derived

using the eigenfunction expansion method [3,30] and the Westergaard [3] Z

function (Equation 3.12). As predicted by the eigenfunction expansion and the

Z function methods, "/,,* is virtually equal to Ty* in our numerical results.

However, the values begin to deviate at higher a/w's; additional higher order

stress terms are possibly required with larger cracks since the finite body effects

(at the surface) become more significant. The relationship determined by the

Westergaard approach (Equation 3.12) between _,* and B* was:

B*=(-1/3)%*=(-l/3_y*. However, the FEA results (with a/w_<0.5) indicate a
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relationship of the form: B* _ -0.37},** _ -0.37yy *. The difference in the two

results could be attributed to finite body effects.

After the successful defense of this thesis, the curve fitting format of

equation 3.17 was found to be incorrect. The T_ term was included when curve

fitting the higher order or, terms for the linear elastic SCT model. However, the

Ty term should not have been included in the curve fits since it would invalidate

the traction boundary conditions along the crack face. The term was not found

to be zero, as it was in the linear elastic CCT model, because the higher order

t_ terms converged to a t'mite stress value at the crack tip as r-,0. The most

likely explanation for the finite value convergence is the inaccuracy of the

singular ¢_ term calculation. An assumption on the out-of-plane stress state

was made during the calculation of the singular term in order to convert the

energy release rate, GI, calculated by ABAQUS [28] to the stress intensity

factor, K,; after converting, K x was then used to calculate the singular stress

terms. Perhaps a better procedure to determine the singular stress term includes

iteratively offsetting the higher order ¢_,_terms by Ty. That is, determine the

higher order o, term coefficients using the out-of-plane stress state assumption.

Then, add Ty to the singular stress term to determine the value of an iterative

singular stress term. At this point, the iterative singular stress term is subtracted

from the FEA stresses to obtain iterative values of the higher order ¢_, stress

terms. The iterative higher order terms can be curve fit in order to obtain

iterative values for Ty and y,. Repeat the previous steps until the iterative

singular ¢_r, term converges and Ty=0. After convergence, a more accurate value

for K, can be calculated using the singular stress term. This value of I_ should



then be used to calculate the singular an term and the first term in the

displacement series, so that the higher order an and uy term coef_cients can be

determined. In addition, perhaps a similar iterative procedure could be utilized

to bring the higher order term coefficients of the linear elastic CCT model

(a/w=0.625,0.?5) into agreement with equation 3.12.

The Q values for the elastic-plastic CCT model were determined by

curve fitting the two-term stress series expansion (Equations 3.19 and 3.20).

The two terms yielded good representations of the crack tip stresses over the

curve fitted range 1 < r/(J/ao) < 15. Sharma and Aravas [32] used this two term

series in their asymptotic analysis of crack tip fields. However, they also stated

that at the distances r/(J/ao)=2 and r/(J/ao)_5 from the crack tip additional

terms in the asymptotic stress expansion (Equation 3.13) may be needed for an

accurate representation of the stress field in front of the crack tip.

The second and third order terms were required for curve fitting the

elastic-plastic displacements. The Sharma and Aravas and Li and Wang

analyses both state that the second order term (B,_r_n"_'_0 does not account for

the effects of elasticity. The tl_rd order displacement term is a function of the

elastic strain resulting from the singular (HRR) stress term. Therefore, with the

second and third order terms included, excellent agreement between the FEA

field values and the curve fitting constants were obtained for the displacement

fields.

The similar trends observed between C,_* and (L,)-_ in figure 3.24 and Q*

and (L_)-, in figure 3.25 are significant developments. The similar trend

suggests that C_*, Q*, and (L,)-' are related. Of course, an implicit relationship



exists between the terms in the crack tip stress, strain and displacement series.

Therefore, if a relationship does exist between (L_)-, and the higher order terms,

(L._)-_can be considered a second fracture parameter (i.e. constraint parameter).

However, an extensive analytical study of the higher order term coefficients is

required in order to develop a relationship with (L,)-'.

(L_-' is a parameter associated with the higher order strain/displacement

terms for a linear elastic stress state. C,_* is a function of the elastic

strain/displacement resulting from the HRR term in the stress series. Therefore,

the similar trend between C,_* and (L_)-' suggests that constraint parameters may

be separable in elastic and plastic components by relating these separate terms

to different higher order terms in the stress, strain, or displacement series.

However, finite geometry effects have not been accounted for in the comparison

between C_* and (L_) -I. In addition, experimental results must be implemented

in the investigation before concluding that (L_)-' is a valid constraint parameter

for general use. Nevertheless, the possible relationship with the higher order

stress and displacement terms suggests a bright future for (L_)-' as a constraint

parameter.
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CHAPTER IV

_TO CHARACTERIZE THREE-DIMENSIONAL EFFECTS

_ IN TWO _ FRAC_RE _/M___

by D. Lambert and H. Ernst

4.1. Introduction

The underlying purpose of this research is to develop a

methodology which would allow the characterization of three-

dimensional (3D) effects in fracture. This characterization

should include:

(I) geometric effects arising from crack front

curvatures (curvatures are present, for example,

with surface cracks ,

(2) geometric effects related to thickness and ligament

length (the gross slzing details that affect the

three-dimensionality of the state of stress at the

crack tip), and

(3) loading geometry effects (including three-

dimensionality of the far field stress arising from

the character of applied loads, and, especially the

gradient of the far-field stress arising from

differing ratios of bending-to-tension).

Two-dimensional (2D) or planar specimens have been observed

to generate different fracture resistance curves when different



4.2

thicknesses are tested. Specifically discussed here are JMR

curves that use the J-modified parameter as developed by Ernst

[4.1,4.2] 1 Different configurations have been shown to support

a differing degree of triaxiality of the stress field in the

vicinity of the crack front, where the fracture process is

occurring. The degree of stress field triaxiality that is

exhibited is referred to as the constraint. The JM R curves are

a result of the different, averaged constraint in each specimen.

Even though the configurations are considered to be planar,

curvatures can develop in crack fronts that result from fracture

in the presence of a gradient of the constraint within the

specimen. Thus, the complexities that occur in the most general

cases of fracture appear in the simplest cases of planar

specimens. Ultimately, to evaluate fracture reslstance retaining

a planar analogy requires that the crack front fall within

specific limits of straightness.

Since, 3D stress fields are present in planar

configurations, an effort to map the crack face separation

profiles of a variety of geometries as a function of the position

within the cross-section has been proposed. The crack tip

opening displacement (CTOD) is a linear function of the J-

integral [4.3]. Profiling represents an extension of that

functional relationship.

One goal of the overall research program is to test a wide

variety of planar specimens, varying the thickness and length of

the initial remaining ligament, as well as the bending-to-tension

INumbersinbracke_re_rtothe_rencesattheendofthe_r
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ratio due to the nature of the applied load to produce

significant changes in fracture behavior. The results will be

compared using the ligament dimensions as variables, and finite-

element analysis will be used to evaluate the triaxiality of the

stress field. Although other parameters might be used, one

parameter being considered to quantify the stress field

triaxiality is h:

(4.1)

Here, Omean is the mean stress and OvM is von Mises equivalent

stress. Ultimately, this approach is expected to produce

parameters and fracture behavior that can be generalized to the

3D cases that are of the most interest.

4.2 Introduction to 2_;.Qf_2_

The displacement of the faces of a crack are a function of

the loading and of the position. Using a two dimensional

analogy, the displacement of a point along a crack face within an

elastic body was given by Tada, et al [4.4]:

(4.2)



4.4

Here, Vel is the "y"-directed elastic displacement at position r,

measured from the crack tip to the point in question, E' is the

equivalent modulus (E'=E for plane stress, E'=E/(I-V 2) for plane

strain, V is Poisson's ratio). The loading is specified in the

presence of a flaw by K, the stress intensity parameter. This

displacement relationship has a square-root of r form.

Hutchinson [4.5] and Rice and Rosengren [4.6] developed a

similar form for plastic response that follows Ramberg-Osgood

deformation characteristics, i.e.:

E__= (4.3 )
Eo (_o

In this equation, £ and G are the equivalent strain and stress

and £o, o o and n are material constants. The form of the

displacement is as follows:

v p, = k . J_"r/''' ( 4.4 )

This equation is written for a non-growing crack, and Vpl is the

the displacement of the body, assuming Ramberg-Osgood type

deformation, and k includes the functionality with regards to the

constraint, i.e., plane stress or plane strain condition.

Looking at the equations (4.2) and (4.4), the constraint appears
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in the coefficient E' for the linear elastic case and in the

coefficient k for the plastic case. Thus, the separation at

various points through the ligament thickness could be expected

to reflect that difference in constraint that arises with the

depth into the thickness. It may also provide a measure of that

constraint.

Since the development above is for a non-growing crack

situation, differences that occur between the theoretical elastic

plus plastic displacements and the displacement profile of an

actual growing crack near the crack tip might provide a fracture

criterion on that local level.

4.3 2_ Matrix and Details

One objective in the research was to characterize the

separation between the surfaces of cracks. This separation

profile is a function of the level of J and of the position

within the ligament. In this case the position would include the

distance from the load-line, x, in the direction of crack growth,

and the depth beneath the surface in the thickness direction, z.

The primary effort in the past six months has been to

characterize the crack face separation of selected specimens.

The specimen identities and the corresponding configurations

appear in Table 4.1, below. Data was generated for a total of

six compact tension (CT) specimens and three center-crack tension

(CCT) specimens. The CCT configuration produces two crack



Spec

E2

81

51

C9

82

84

O8

D6

55

B9

Config

Table 4.1: Matrix of Specimens Profiled

4.6

(W, B, and b are in inches, a/W is nondimensional)

W B b a/W Remarks

IT-CT 2 1/2 1

IT-CT 2 1/2 .5

IT-CT 2 1/4 1

IT-CT 2 .85 1

IT-CT 2 1/2 1

IT-CT 2 1/2 1

IT-CT

20%SG 2 1/2 .8

CCT 1 1/2 .5

CCT 1 1/8 .5

CCT 1 .85 .5

.5

.75

.5

.5

.5

.5

.6

.5

.5

.5

Baseline Specimen

Larger Init. a/W
Thinner Section

No of

Profs

8

8

5

Thicker Section 13

8Multi-Specimen

Multi-Specimen 8

Side-Grooved 8

Tension 2x8

Tension, Thin 2x3

Tension, Thick 2x9

profiles per specimen, and thus the total number of crack fronts

observed is thirteen. Profiles were made of the AL6061-T651 in

every case: the IN718-STAI material has proven too hard to

polish in the same fashion as the aluminum. Epoxy infused into

the gap of the crack was effective in producing a well-defined

crack profile for the aluminum, but the profiles of the nickel

were rounded and poorly-defined. Until the techniques have been

modified to overcome the rounding, the profiling was suspended

for the nickel.

After mounting the specimens in epoxy, the exposed surface

was polished to provide a surface profile. After recording the

profile, 0.025- to 0.035-inches was removed by grinding and

polishing to produce the next profile to be recorded. This was

continued for each specimen into the center of the cross-section.



14440 REM

15150

15155

15160

15162

15164

15166

15168

15195

15200

15210

15220

15230

15240

15241

15242

15245

15250

15255

15260

15265

15270

15301

15302

15304

15310

15320

15330

15340

15350

15355

15360

15363

15364

15365

15390

15400

15410

15420

15425

15430

15450

15455

15456

15460

15500

15000 REM dJ/da CALCULATION

15001 REM

151OO REM TRANSFER ARRAYS SO EXISTING SUBROUTINES CAN BE USED

15105 REM

15110 FOR DUM-0 TO NUM:JT(DHM)zJ(DUM):XT(DUM)'X(D UM) :YT(DUM)=Y(DUM):NXT(D'

DUM) :NYT(DUM),,NY(DUM) :NEXT DUM

15120 REM

REM CALCULATE NORMAL TO EQUIVALENT ELLIPSE

FOR DUM=I TO NUM-1

YD (DUM) ,,-X (DUM) *A* ( 1- (X (DUM) / C (DUM)) "2 ) ^-. 5/C (DUM) "2

PX=-YD (DUM) : PY=I

HYP= (I+PX "2) ^. 5

NX (DUM) ,,PX/HYP

NY (DUM) -PY/HYP

NEXT DUM

REM CALCULATE COORDINATES OF POINTS AHEAD OF FRONT

FOR DUM,_0 TO NUM

X (DUM)=XT (DUM) +NX (DUM) * (T/2500)

Y (DUM) ,_YT (DUM) +NY (DUM) * (T/2500)

NEXT DUM

A=Y (NUM)

REM

REM CALCULATION OF EFFECTIVE C'S SUCH THAT NORMALS ARE EQUAL

FOR DUM=I TO NUM-1

C (DUM),,(X (DUM) A2/(1- (Y(DUM)/A) _2) ) ^. 5

NEXT DUM

C(NUM),,C(NUM-I) :REM BECAUSE C AT THE TOP IS UNDEFINED

C(0)"X(0) :REM BY DEFINITION

REM

REM CALCULATE ELLIPTICAL ANGLES

GOSUB 12000

REM

REM CALCULATE G' s

GOSUB 8000

REM

REM CALCULATE J' s

GOSUB 8500

REM

REM CALCULATE dJ/da FROM INCREMENTAL GROWTH OF EQUIV. FRONTS

REM

FOR DUM=0 TO NUM:JDA(DUM)=(JT(DUM)-J(DUM))/(T/2500):NEXT DUM

REM

REM CALCULATE dJ/da FROM MASTER R-CURVE

FOR DUM=0 TO NUM

JDAM ( DUM ) = 3 *ALPA*J (DUM ) "2 + 2 * BETA* J (DUM) +GMMA

JDAM (DUM)sl/JDAM (DUM)

NEXT DUM

FOR DUM=0 TO NUM

F (DUM) mJDA (DiM ) /JDAM (DiM)

IF F(DiM)<I THEN F(DUM),=I:REM BY DEFINITION F CANNOT BE LESS THAN 1

NEXT DUM

REM TRANSFER BACK ARRAYS

15510 FOR DUM,:0 TO NUM:J(DUM)=JT(DUM) :Y(DUM)=YT(DUM) :X(DUM)=XT(DUM) :NX(DUM

DUM ) :NY (DIM) -N YT (DIM) : NEXT DiM

15600 RETURN



10020

10040

10050

10200

10210

10220

10900

10998
10999

C(D1L_)- ( (X (DLTH) "2.A'2) / (A"2-¥ (DUM) "2) ) *. 5

NEXT DUH

C (NUN)-C (NUN-I)

FOR DUM=0 TO NUM

IF C(DUM)>W/2 THEN C(DUM)=W/2:PRINT" C > W/2"

NEXT DUM

RETURN

REM ####################l#tt###################t###############

REM

.I000 REM CALCULATION OF Fs AT ONE POINT

1001

1002

1100

Ll150

L1200

L1250

1300

1495

REM

REM FOR A/C>1

MI=(C(DUM)/A)A.S*(I+.04*C(DUM)/A)

M2=.2*(C(DUM)/A)'4

M3=-.II*(C(DUM)/A)^4

LG.I+(.I+.35,(C(DUM)/A)*(A/T)^2)*(I-SIN(TH(DUM)) )'2

FT=((C(DUM)/A)-2,(SIN(TH(DUM)))*2+(COS(TH'(DUM))) A2)^'25

RETURN

11499

11500

11550

11600

11650

11700

11900

11997

11998

REM

MI=I. 13-9. O00001E-02* (C (DUM)/A)

M2=-. 54+. 89/(. 2+A/C (DUM))

M3=. 5-1/(. 65+A/C (DUM))+14" (1-A/C (DUM)) "24

LG=I+(.I+.35*(A/T)^2)*(1-SIN(TH(DUM)))^2

FT= ((A/C(DUM)) "2*COS(TH(DUM) ) "2+SIN (TH (DUM)) ^2 ) ^. 25

RETURN

REM ###########################################################

REM

11999 REM

120O0 REM CALCULATION ELLIPTICAL ANGLE ALONG THE FRONT

12001

12100

12110

12115

12117

12120

12150

12400

12450

12998

REM

FOR DUM=I TO NUM-I

IF A/C(DUM)<I OR A/C(DUM)=I THEN OPP=¥(DUM):ADJ=(A'2-OPP_2) ^'5

IF A/C(DUM)>I THEN ADJ=X(D UM) :OPP=(C( DUM)'2-ADJ'2)^'5

IF A/C(DUM)<0 OR X(DUM)>C(DUM) THEN PRINT"A/C OUT OF RANGE":GOTO 500

TH (DUM) =ATN (OPP/ADJ)

NEXT DUM

RETURN
REM ################################'###########################
REM

12999 REM

130O0 REM CALCULATION OF Dstar

13001

13100

13110

13120

13130

13140

13150

13160

13400

13450

14000

14001

14100

14105

14110

14120

14200

14420

14430

REM

FOR DUM=0 TO NUN

XDI=. 224*N*W

XD2=PI*BN * (N+I) * (GAVG/SI G'2 )

XD3= (A/C(DUN)) A (1-PP*N)

XD4" (A/T) ^ (-2-M'N)

XDS (DUN) =XD1 *XD3 *XD4 / XD2

NEXT DUN

RETURN

REM #####/#####################################################
REM
REM INCREMENT PLASTIC DISPLACEMENT

VPL_VPL+IVPL

IF VPL>-VPLM THEN 500

P-W*T*BN* (Y (NUM)/X(0) ) *PP* (¥ (NUM)/T) "M* (VPL/T) " (l/N)

SIS'P/(W'T)

RETURN

JDAM (DUM) =I/JDAM (DUM)

NEXT DUM



8498 REM

8499 REM

8500 REM

8501 REM

POINT J CALCULATION

8502

8580

8590

8600

8610

8620

8630

8640

8700

8705

8710

8720

8725

8995

8996

8997

8998

8999

REM

REM FIND GAVG

GTOT-0

FOR DUM=0 TO NUM

GTOT=GTOT+G (DUM)

NEXT DUM

GAVG=GTOT/(NUM+I )

REM

GOSUB 13000

REM

FOR DUM=0 TO NUM

J (DUM) ,,G (DUM) * (I+XDS (DUM) * (SIG/BN) A (N-l))

NEXT DUM

REM

RETURN

REM ###################################################1#######
REM

REM

9000 REM

9001 REM

DELTA-a CALCULATION

9002

9010

9015

9020

9025

9026

9027

9090

9100

9110

9170

9180

9190

9200

9210

9496

9497

9498

9499

REM

FOR DUM = 0 TO NUM

START (DUM) =ADEL (DUM)

ADEL (DUM) = (ALPA*J (DUM) ^ 3+BETA*J (DUM) ^ 2+GMMA*J (DUM))/F (DUM)

IF ADEL(DUM) <START(DUM) THEN ADEL(DUM)=START(DUM)

INCA (DUM) =ADEL (DiM ) - START (DiM )

REM

NEXT DiM

REM MOVING AVERAGE TO SMOOTH OUT INCREMENTAL CRACK EXTENSION

REM

FOR DUM=I TO NUM-1

INCA (DIM) = (INCA(DUM-I) +INCA(DIM) +INCA(DUM+I) )/3

NEXT DIM

INCA(0) = [2*INCA (0) +INCA(I) )/3

INCA (NUM) = (2*INCA (NUM) +INCA (NUM-I))/3

RETURN

REM ###########################################################

REM

REM

9500 REM

9501 REM

ADVANCE THE CRACK FRONT

9502

9510

9520

9530

9535

9540

9590

9997

9998

9999

REM

FOR DUM=0 TO NUM

X (DIM ) =X O (DiM ) +NX (DiM) * INCA (DiM) :XO (DiM) = X ( DUM )

Y (DUM) =YO (DiM) +NY (DiM) *INCA (DiM) :YO(DUM) =Y (DiM)

IF X(DUM)>W/2 OR Y(DUM)>T THEN PRINT:PRINT"EXCESSIVE CRACK GROWTH"

NEXT DiM

REM

RETURN

REM

REM

10000 REM

I0001 REM

CALCULATION OF EFFECTIVE c ALONG CRACK FRONT

10002 REM

10004 A:Y(NUM)

I0010 FOR DUM=0 TO NUM-I



4295 R_ ############################1######1#######################

5998 REM

5999 REM

6000 REM

6001 REM

PLOT THE CRACK FRONT ON SCREEN

6002 REM

6100 LOCATE 1,1:PRINT:PRINT "LOAD " ";P;" ibf Vpl = ";VPL;" in

II

6110 REM

6125 LINE (2.6*X(O)/T,Y(O)/T)-(2.6*X(1)/T,Y(1)/T)

6130 FOR DUM = 1 TO NUM-1

6140 LINE (2.6*X(DUM)/T,Y(DUM)/T)-(2-6*X(DUM+I)/T,Y(DUM+I)/T)

6150 NEXT DUM

6996 RETURN

6997 REM ###########################################################

6998 REM

6999 REM

7000 REM

7001 REM

DIRECTION OF CRACK EXTENSION

7002 REM

7003 NY(0)=O:REM

7004 NX(0)=I:REM

7005 REM

7006 NX(NUM)=O:RE M

7007 NY(NUM)=I:REM

7008 REM

7010 FOR DUM=I TO NUM-I

7020 Iy-y(DUM+I)-Y(DUM-I):REM

7025 IX=X(DUM+I)-X(DUM-1) :REM

7029 REM

7030 PX=IY:REM

7035 PY=-IX:REM

7036 REM

7040 HYP=(PXA2+PY'2) A.5

7045 REM

7050 NX(DUM)=PX/HYP

7060 NY(DUM)=PY/HYP

7O65 NEXT DUM

7070 REM

CONSTRAINS EDGE TO HORIZONTAL FREEDOM

CONSTRAINS EDGE TO HORIZONTAL FREEDOM

CONSTRAINS CENTER TO VERTICAL FREEDOM

CONSTRAINS CENTER TO VERTICAL FREEDOM

DIFFERENCES IN POSITIONS FOR NEIGHBORING

POINTS ON THE CRACK FRONT

CONVERT TO MEASURE OF SLOPE OF

THE PERPENDICULAR

7996 RETURN

7997 REM ###########################################################

7998 REM

7999 REM

8000 REM

8001 REM

G CALCULATION

8002 REM

8010 FOR DUM=0 TO NUM

8020 PHI2_(I+l-464*(C(DUM)/A)^I'65) :REM PHI2

8025 REM

8330 FW=(COS((PI*C(DUM)/W)*(A/T)M'5)) "-'5:REM FW

8335 REM

8400 IF A/C(DUM)>I THEN GOSUB 11000 ELSE GOSUB 11500:REM M1,M2,M3,LG,FT

8405 REM

8410 FS=(MI+M2*(A/T)'2+M3*(A/T)'4)*LG*FT*FW

8430 REM

8440 K=SIG*FS*(PI*A/PHI2) A-5

8450 G(DUM)=K'2/E

8460 NEXT DUM

8496 RETURN

8497 REM ###########################################################



2350 RETURN

2398 REM

2399 REM

2400 REM

2401 REM

PLATE DIMENSIONS

2402

2410

2420

2430

2498

2499

2500

2501

2502

2505

REM

T=. 25 :REM PLATE THICKNESS

W=2 :REM PLATE WIDTH

RETURN

REM

REM

REM MATERIAL DEFORMATION PROPERTIES

REM

REM

PRINT:PRINT"MATERIAL: 21-6-9 SS"

!2510

2520

2530

2540

2550

2960

2998

2999

E=2.84E+O7:REM

BN=II0011!

M=-.076

PP=.0383

N=5.75

RETURN

REM

REM

YOUNG'S MODULUS

3O00 REM

3001 REM

J-dA CURVE INPUT

3002

3060

3070

3080

3150

3198

3199

REM

ALPA..7 .226487E-14

BETAm-6. 2973138D-I0

GMMA= . 0000040561366#

RETURN

REM

REM

3200 REM

3201 REM

CRACK GEOMETRY

3202

3220

3230

3240

3270

3280

3290

3998

3999

REM

PRINT: INPUT "Initial A/T";ADT

IF (ADT>I) OR (ADT=I) THEN GOTO 3220 .

PRINT: INPUT "Initial A/C";ADC

A--ADT*T

C=A / ADC

RETURN

REM

REM

4000 REM

4001 REM

SET-UP THE SCREEN

4002

4010

4020

4030

4040

4050

4060

4070

4075

4170

4180

4190

4200

REM

PI=3. 14159265359#

PIDT=PI/2

FOR DUM = 0 TO NUM

X (DUM) =C*COS (DUM*PIDT/NUM)

Y (DUM) =A'SIN (DUM*PIDT/NUM)

XO (DUM) -X (DUM) :YO (DUM) -Y (DUM)

NEXT DUM

Y(0)=0::X(NUM)=0!:YO(0)=0:XO(N_)=0

SCREEN 9

WINDOW (-1,-.25)-(3.8,1.25)

LINE (0,-.25)-(0,1.25)

LINE (-I,0)-(O,0):LINE (2.6"C/T,0)-(3.8,0)

4210 LINE (-1,1)-(3.8,1)

4290 RETURN



5 CLS:CLEAR:KEY OFF:SCREEN 0

i0 DEFINT D

ii DEFDBL A-C,E-Z

12 DIM X(50) ,Y(50) ,NX(50),NY(50),ADEL(50),TH(50) ,NXT(50) ,NYT(50)

13 DIM G(50),J(50),C(50),EXT(50),START(50),INCA(50),YD(50)

14 DIM XO(50),¥0(50),XDS(50),JT(50),XT(50),YT(50),JDA(50),JDAM(50)

15 REM

35 GOSUB 2000:REM MAXIMUM VPL AND VPL INCREMENT

40 GOSUB 2300:REM NUMBER OF POINTS ALONG THE CRACK FRONT

45 GOSUB 2400:REM PLATE DIMENSIONS

50 GOSUB 2500:REM MATERIAL DEFORMATION PROPERTIES

55 GOSUB 3000:REM J-R CURVE INPUT

60 GOSUB 3200:REM CRACK GEOMETRY

65 GOSUB 4000:REM SCREEN SET-UP

70 REM

71 REM . MAIN LOOP

72 REM

75 GOSUB 6000:REM PLOT THE CRACK FRONT

81 REM

82 FOR DUM=0 TO NUM

83 J (DUN) =0

84 NEXT DUN

85 GOSUB 14000:REM

86 REM

90 GOSUB 7000:REM

91 REM

92 GOSUB IO000:REM

93 REM

94 GOSUB 12000:REM

95 REM

96 GOSUB 8000:REM

97 REM

98 GOSUB 8500:REM

99 REM

i00 GOSUB 15000:REM

I01 REM

105 GOSUB 9000:REM

106 REM

if0 GOSUB 9500:REM

iii REM

150 GOTO 75

500 END

501 REM l######l###llll#1##ltt##l##1##l#tll###l##t#l#l#####tt##tl####1

1998 REM

1999 REM

2000 REM VPL AND VPL INCREMENT

2001 REM

2002 REM

2160 PRINT:INPUT "Enter the Maximum Plastic Displacement (in) ";VPLM

2170 IVPL=VPLM/50

2283 RETURN

2298 REM

2299 REM

INCREMENT THE PLASTIC DISPLACEMENT

DIRECTION OF CRACK EXTENSION

CALCULATION OF EFFECTIVE C ALONG FRONT

CALCULATE ELLIPTICAL ANGLES ALONG THE FRONT

CALCULATE G ALONG THE CRACK FRONT

CALCULATE Jtot ALONG THE CRACK FRONT

CALCULATE dJ/da ALONG FRONT

DELTA-A

ADVANCE THE CRACK FRONT

2300 REM

2301 REM

NUMBER OF POINTS ALONG CRACK FRONT

2302 REM

2303 NUN=f0

2304 NUM=NUM-I:REM THIS ACCOUNTS FOR NUMBERING BEGINNING AT 0

2305 REM

2335 TH(0)=0:TH(NUM)=3.14159265359#/2
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4.7

4.4 Results of 2.vm//A/ms

Two of the profiles produced has been included as figures

(4.1a and 4.1b) for the sake of discussion. Figure (4.1a) is a

profile of a crack taken at the surface. The precrack and the

monotonic fracture regions are marked on the figure. Figure

(4.1b) shows a profile of the same crack taken at the center of

the cross-section. Again, the precrack, and the monotonic

fracture regions are shown. The character of the two profiles is

quite different. The monotonic fracture region at the surface

(figure 4.1a) is at an angle to the precrack region, while that

angle is not obvious for the central section (figure 4.1b). To

illustrate a second observation, the net displacement has been
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Figure 4.1: Typical Crack Face Separation Profiles; (a) at surface, (b) at central cross-section.
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Figure 4.2: Typical Crack Separation Plots; (a) at surface, (b) at central cross.section.

calculated as the difference between the y-values of the upper

and the lower parts of the profile, and figures (4.2a) and (4.2b)

have been included below to register this second observation.

In figures (4.2a) and (4.2b), the precrack region and the

monotonic fracture region are again marked. The two separation

profiles look dramatically different: a substantial region of

stretch exists at the end of the precrack region and the

beginning of the monotonic fracture region at the surface. This

stretch is not apparent in the central cross-section.

At this time, the profile data is being developed and

observations are being made.



4.5 _uture Efforts

4.9

Profiling continues, and analysis of the profiles and

synthesis of an approach to account for the constraint in the

crack growth of these "planar" specimens.
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